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We generalize to higher dimensions the result of V. Arnold that the integral Hopf invariant 
(or total helicity) of a closed two-form on a three-dimensional manifold coincides with the 
asymptotic linking number of its vorticity field. For the higher-dimensional case the integral 
invariant of Hopf-Novikov type for a set of forms turns out to be equal to an asymptotic “mul- 
tilinking number” of the corresponding kernel foliations. In particular, the notions and main 
properties of “generic” and “nongeneric” multilinking numbers are described. 
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The classical Hopf invariant for S 3-S2 mappings has two well-known defini- 
tions: a geometrical one (as the linking number of two curves which are inverse 
images of two arbitrary points of S’) and an integral one (as the value J 01 A d-la 
for any two-form cr on S3 which is the pull back of a generator of the group 
HZ (S*, Z) ). In ref. [ 11, Arnold generalized the geometric invariant to the case of 
any divergence-free vector field on S3. It turned out that the integral Hopf invar- 
iant of any closed two-form on S3 is equal to the asymptotic linking number of 
the trajectories (or “helicity”) of the kernel fields for this two-form. This paper 
is devoted to the ergodic interpretation of the analogous integral invariants of 
two-forms on manifolds of higher dimensions. 

For odd-dimensional manifolds, we consider the geometrical meaning of in- 
variants of the type Jd-‘aApA-- A o to be the multilinking number of folia- 
tions corresponding to these forms cy, . . . . CO. These integrals appear in the group 
theoretic approach to the theory of an ideal and barotropic fluid [ 31. Unlike the 
three-dimensional case, for which one can define the asymptotic linking number 
for any pair of trajectories, in the general case it is necessary to consider the link- 
age of one trajectory with the whole foliation of codimension 2 (see sections 2, 
3 ). For even-dimensional manifolds the interpretation of Novikov invariants [ 4 ] 
is described to be an averaged nongeneric linkage (see section 4). 

In fact, here we present a sort of dictionary that translates facts on differential 
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forms into facts concerning averaged linking properties of their kernels. For sin- 
gular forms concentrated on compact surfaces, these two languages coincide. It 
would be interesting to find an analogous dictionary for various characteristic 
classes of foliations (cf. refs. [ 6,2 ] ) . 

Notice, that the integrals described define multivalued functions on the set of 
mappings of a sphere into a given manifold [ 41. Homotopically invariant func- 
tionals generate an “integer lattice” in the space of integrals and so their role is 
equivalent to the role of the classical Hopf invariant among the asymptotic ones. 

1. Hopf-Novikov integrals 

In this section we recall the known facts concerning integrals of smooth two- 
forms on manifolds. 

I. I. INVARIANTS OF TWO-FORMS ON ODD-DIMENSIONAL MANIFOLDS 

Let M2”I + I be a compact connected manifold without a boundary, and, more- 
over, H, (M)=H?(M) =O. Denote closed two-forms on M by CY, fl, . ..E@(M). 
dcx = d/l= ... = 0. Let d - ‘a be an arbitrary primitive one-form for cy (two different 
primitives differ by a differential of a function on M). There exists the obvious 

Proposition 1.1. For the set CY, /?, . . . . o of m+ I closed two-forms on IV”+ ‘, the 
quantity I( (Y, . . . . ~)=Jn,d-‘ahj3rr...Awdependsoncr,...,oonlyanddoesnot 
depend on the particular choice ofd- ‘CL 

Remark 1.2. The value of I( (x, . . . . o) does not change under a permutation of the 
arguments. 

Remark 1.3. Invariants of the type I( a, CY, . . . . a) are the first integrals of the mo- 
tion of a (2m + 1 )-dimensional ideal incompressible fluid [ 3 1. 

Let the manifold M”“+’ be equipped with a volume form ,u [,uE!S~“‘+’ (M)]. 
Then the statements on closed two-forms can be reformulated in terms of diver- 
gence-free (2m- 1) vector fields on M (denoted by script letters), which are de- 
fined by the conditions i,,,u=a, ijp=/?, etc. The “divergence-free” property of 
d means that da, = 0. 

Theorem 1.4 [ 11. For M3 the quantity I( CY, /3) coincides with the average asymp- 
totic linking number of vectorfields d and 1 which are the vorticities of two-forms 
cy and/3 (i.e., i.,,u=cx andi,p=p). 
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(The definition of the average linking number is given below and in ref. [ 11. ) 
The ergodic interpretation of the invariant I( (x, p, . . . . o) for n> 1 is proposed 

in sections 2,3. Notice that in general the multivector field d defines a foliation 
(and a measure on it) only if the rank of the two-form cy is at most 2 on M. 
Indeed, in this case the field d is the kernel field for cy, and the kernel field for a 
closed two-form is completely integrable (Frobenius integrability criterion ). If 
rk,a > 2 at a certain point XEM, then d(x) is an indecomposable (2m - 1) vec- 
tor and does not define any subspace in rsM. 

I .2. NOVIKOV INVARIANTS OF TWO-FORMS ON EVEN-DIMENSIONAL MANIFOLDS 

Let M4 be an arbitrary four-dimensional manifold, and let a, p be exact two- 
forms satisfying the following conditions on their external squares: 

aAa=pA/3=0, (1) 
and product: 

ar\p=o. (2) 

Proposition 1.5 [4]. The integrals ~(cr,cr,P)=l~,dd-‘ar\a,~d-‘p and 
s(cr,p,p)=l,,,d-‘a!r\pr\d-‘pdonotdependon thechoiceofd-‘ctandd-‘p. 

Remark 1.6. In ref. [4] Novikov represented the set of invariants for arbitrary- 
dimensional M, we avoid the more complicated formulas and consider the case 
M4 just for illustration. 

Let the manifold M4 be equipped with a volume form p. Condition ( 1) means 
that two-forms (Y and/? have rank 5 2 over M, i.e., these forms define two-dimen- 
sional foliations J&’ and B (with measures on them). Condition (2) provides a 
nongeneric position of them, namely, their intersection is a one-dimensional fo- 
liation (and, moreover, their sum defines a three-dimensional one [ 1 ] ). 

I .3. CRUCIAL POINT OF THE INTERPRETATION 

In fact, the exposition given here represents a reformulation and interpretation 
of the concepts involved in the following language: instead of “closed two-forms”, 
we say their “kernel fields” (for forms of rank 12, the kernel fields form folia- 
tions of codimension 2 ), so the operations d- ’ and A correspond to transferring 
from the surfaces to the films bounded by them and to their intersections, respec- 
tively. Finally, the integration JM is the summation of the intersection points with 
the corresponding signs. 

The intersection of a manifold with a film bounded by another manifold gives 
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us their linking number, so after all the invariants under consideration are certain 
average linking numbers. 

2. Geometric meaning of invariants on odd-dimensional manifolds 

In this section we describe the ergodic interpretation of the invariant I( (Y, . . . . o), 
where the rank of one of the two-forms cy, . . . . w is at most 2. 

2.1. THE LINKING OF A FOLIATION OF CODIMENSION 2 WITH A CURVE 

A closed two-form CY of rank I2 determines a (nonregular) kernel foliation of 
codimension 2 on the manifold M”. If M is equipped with a volume form p, then 
this foliation is the field of (n -2) vectors d such that idp= Q (i.e., of the kernels 
of CY ). Being a kernel field of a closed two-form, this field is integrable. 

Definition 2.1. The average linking number of a closed curve rc M and the fo- 
liation d is the flow of the two-form (Y through an arbitrary film a-‘r bounded 
byr: 

k(r,d)= j cl!= Jd-Ia. 
a-lr I- 

(3) 

Remark 2.2. For any manifold M” [for which H’ (M) = H2 (M) = 0 ] there exists 
a “linking form” LEO’ (M) xSZ"-~(M) such that for given arbitrary noninter- 
secting compact one- and (n -2)-dimensional submanifolds r and 8 in M, their 
“usual” linking number is equal to J Jrx 8c MX M L (see refs. [ 3,5 ] ) . 

The following proposition motivates the definition of k( r, ~4). 

Proposition 2.3. The number k(I’, ~4) coincides with the linking number ofrand 
the separated fibers of d evaluated with the help of the “linking form” L and av- 
eraged over M. 

ProoJ 

15 L= jj iJLr\p= SI LAid,u= II LACY= jd-‘a. 
I-Xd I-xM I-XM I-XM r 

[The first identity is the definition of J J rxd L, the last one is the main property 
of L: the “linking form” acts on the exact differential forms just like the operator 
d-’ (seeref. [3]).] 0 
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Remark 2.4. For a foliation & with compact nonsingular fibers, the number 
k( r, d) is exactly the average linking number of the curve r and every fiber. 

Indeed, the contribution of each fiber is propositional to its measure given by 
d and its linking number with r. For instance, let there exist a projection 
K : M”4N2 and let a be a pull back of some area form v on N. Then 

/qr,d)= Jd-la= J d-Iv= J Y, 
I- n(r) a-k(r) 

i.e., k is the oriented area inside the projection a(r) of the curve r 

Remark 2.5. For n = 3 one can define not only the average linking number of r 
with d, but also the asymptotic linking number of r with separate fibers of d 
[II. 

In this case d is the vorticity vector field curl (Y of the two-form QI : icurlap= a. 
A segment of any trajectory (of this vector field) considered for some large time 
T and closed by a short path has a certain linking number with the curve r. The 
time average of this number is the asymptotic linking number of this trajectory 
and r. 

If the fibers of d are noncompact and n> 3, generally speaking, it is impossible 
to define the asymptotic linking number of separate fibers with r. For the multi- 
dimensional case there is no satisfactory definition of the system of short paths 
and of canonical “time” on the fibers. 

2.2. ASYMPTOTIC LINKING NUMBER OF A VECTOR FIELD AND A FOLIATION 

Let g:x be the trajectory of the vector field v issuing from the point XEM. We 
select a large number T and close the segment g:x (0 4 t < T) of this trajectory by 
a certain “short” path, so that we obtain a closed curve 1;2:( x). 

Definition 2.6. An asymptotic linking number k(x, V, &) of the trajectory g:x of 
the vector field v issuing from the point x~Mis defined as the limit 

k(x, v, ~8) = lim Ma!-(x), d) 
T-00 T ' (4) 

It turns out that this limit exists almost everywhere and is independent of the 
system of “short” paths (the axioms for this system are given in ref. [ I] ). 

Definition 2.7. The average linking number R( v, &) of a vector field v and a fo- 
liation d on M (equipped with a volume form cc) is R( v, &) = J,,, k( x, v, a)~, 
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Now we are able to give an ergodic interpretation of the Hopf-type integral 
invariant I( cy, . . . . o) for a set of m+ 1 closed two-forms cx, . . . . o on an odd-di- 
mensional manifold &I*‘“+’ with volume form p. 

Theorem 2.8. Let the rank of one of the forms Cfor example, (Y ) be at most 2. Then 
I(% A a*‘, o)=J,d-‘cuhpA ... A o coincides with the average linking number of 
the vector field curl (/I, . . . . w) and the foliation d: I( a!, . ..) w) = 
R(curl(j3, . . . . w), G?), where the fields curl(p, . . ..w) and d are defined by 
Lrl(p....,w)p= P A ... A co and itidp = CY, respectively. 

Remark 2.9. Certainly, for the definition of the flow of (Y in definition 2.1, and 
consequently for this theorem, rank LY is not important: in the general case, we 
would consider the linkage with an (n-2)-vector field instead of an (n- 2)- 
dimensional foliation. 

Proof of theorem 2.8. The vector field v=curl(/?, . . . . w) is divergence-free, be- 
cause the fOm i&L= fi A a-S A o is closed. Hence, the field v preserves the volume 
form ,u, and we may apply the Birkhoff ergodic theorem to the flow of v. 

Replacing the time average in the definition of I? by the space average, we ob- 
tain the following: 

R(v,,!q= I( * ;z +k(g;x, ~4) ,u= 
M - 

) i(pz$f i,d-‘a)/ 
0 

= j ( iVd-‘cy)pc= j d-‘cr A i& 
M M 

= d-‘cw/,~r\.-.AU=~(a, . . ..a). 
M 

(The second identity follows immediately from definition 2.1, because the inte- 
gral of d-la! measures the linkage number with AZ?.) 0 

3. Multilinking number of a few foliations 

Closed two-forms a, . . . . o with rank ~2 determine the foliations and the in- 
variant I( cy, . . . . o) measures the complicity of the mutual multilinkage of their 
fibers. 

3.1. DEFINITION OF THE MULTILINKING NUMBER 

The usual linking number is defined for any pair of surfaces P’ and Q’ in [R” 
with s+ I= n - 1, Pn Q= 0 (i.e., this is a bilinear form on the space of noninter- 
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setting submanifolds of appropriate dimensions). We define the multilinking 
number as a multilinear form on the space of r-tuples of submanifolds (Pi, . . . . P,) 
such that ,& codim(Pi)=n+l and n;=, Pi=@. 

For instance, one can link three circles on a plane (fig. 1 a) or two spheres and 
one circle in three-space (fig. 1 b). 

Definition 3.1. The multilinking number of r oriented closed submanifolds 
P I¶ -*., P, in IR” ( Sn) satisfying the above conditions is the number of intersection 
points (with the corresponding signs) of a film bounded by one of these surfaces 
Pi with all the other submanifolds. 

If these submanifolds are equipped by a transverse orientation then all films 
bounded by them and their intersections are also oriented. So the signs of the 
intersection points are well defined from comparison of their transverse orienta- 
tions with the orientation of IF? (S”). 

Proposition 3.2. The absolute value of the multilinking number of the set P,, . . . . P, 
does not depend on the choice of the initial surface Pi. 

Proof: Suppose we calculate the multilinking numbers starting with Pi or P) Con- 
sider arbitrary films a-Pi and a-‘Pj and look at the complete intersection of the 
remaining r- 2 surfaces with both films at once. This intersection is a one-dimen- 
sional submanifold in M”. This submanifold connects two sets of points, deter- 
mining the multilinking numbers in both cases. Therefore these sets of points are 
homologically the same, and the corresponding multilinking numbers coindde. 

Another way to prove the proposition is to notice that the multilinking number 
coincides with the usual linking number of the submanifold P, x P2x ..-x P,c 
Mxsm.xMwith the diagonal d CMX-+xM [d= (x, . . ..x).x~M]. 

(4 
Fig. 1. 
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Remark 3.3. This multilinking number can be defined as the usual linking num- 
ber of one of the surfaces with the intersection of all others. Example: the linkage 
of m + 1 surfaces of codimension 2 in IR*“‘+’ can be reduced to the linkage of one 
of them with the intersection curve of the rest. 

3.2. ASYMPTOTIC MULTILINIUNG NUMBER 

Suppose that m+ I closed two-forms CX, . . . . o define the foliations of codimen- 
sion 2 in MZm+ ‘. 

Definition 3.4. The asymptotic linking number of one of these foliations (of co- 
dimension 2) with (one-dimensional) foliation being the intersection of the re- 
maining m is called the asymptotic multilinking number of the given foliations. 

Notice that for the forms, /I, . . . . o the intersection is determined by the vector 
field curl@, . . . . w), The following theorem is just a reformulation of theorem 2.8. 

Theorem 3.5. The integral Z( cy, . . . . CO) is equal to the asymptotic multilinking 
number of the foliations given by the forms cy, . . . . CO. 

4. Geometric meaning of Novikov’s invariants 

4.1. NONGENERIC LINKAGE 

In the preceding section we saw that submanifolds may possess a nontrivial 
multilinking number only if the sum of their codimensions is m + 1. To describe 
the ergodic meaning of Novikov’s invariants, let us extend the concept of multi- 
linking: we discard the codimension condition if it is compensated by new non- 
generic intersection conditions. For instance, two circles S* and a sphere S* can- 
not be linked in lR3 (see fig. 2, one can untie any configuration of them not passing 
through triple points). However, if these two circles are meridians of the same 
ball (and so their intersection consists of two points, i.e., it is So), the linkage 

Fig. 2. 
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may be nontrivial (fig. 3). 
In the definition of invariants 9, conditions of the type C.Y A p= 0 provide the 

nongeneric intersections of the fibers corresponding to a! and /I. 

4.2. ERGODIC INTERPRETATION 

Recall the definition of the invariants for a four-dimensional manifold: 

S(cY, a,&= Jd-la AcYAd-y?, s(ar,8,18)=d-‘crA8Ad-‘B, 
M 

where exact two-forms u and p are such that Q! A a = p A p= (Y A p= 0. 

Definition 4.1. The vector field curl L for the three-form L on M4 (equipped with 
a volume form ,u) defined by I curlLp=L is called the vorticity field of L. 

Theorem 4.2. The invariant 9 ( LY, a, j?) [ f ( (Y, j3, /?) ] coincides with the average 
linking number of the foliation d of the form LY [the foliation B of the form jl] 
with the vorticityfield curl(d(d-‘a A d-‘p)). 

Proof: The three-form d(d-‘a A d-‘jl) is closed, hence its vorticity vector field 
is divergence-free, and again we may apply the Birkhoff ergodic theorem: 

R(curl(d(d-‘a!Ad-r/3)), d)=j d-*a!hicurl(d(d-‘cu~d-,8))~ 
M 

= d-‘aAd(d-‘arAd-‘p)=Y(a,cr,j?). 0 
s 
M 

Corollary 4.3. The average muMinking number turns out to be independent of the 
choice of primitive one-forms d- ‘CY and d- ‘/I, though the vorticity field 
curl(d(d-‘a A d-lb) ) (in theorem 4.2) does depend on this choice. 

Fig. 3. 
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Remark 4.4. The vorticity field of the three-form d( d- ‘a! A d- ‘p) is tangent to 
the three-dimensional foliation which is the sum of the foliations ZX! and 9. 
Roughly speaking, the quantities 3 ( CY, (Y, p) and 4 (cy, p, /?) are the asymptotic 
linking numbers of the one-dimensional foliation of the intersections dn 28, with 
each of the foliation d and $8 determined by CY and p. 

The author is profoundly grateful to V.I. Arnold for posing the problem and 
stimulating discussions and to V. Ginzburg, S. Tabachnikov and A. Weinstein for 
numerous fruitful comments. 
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